
ECE 275A Homework # 1 Solutions

1. To solve this problem, we need to start with some known relationship between ‖x‖,
‖y‖, and 〈x, y〉, possibly with one or more free parameters to give us some flexibility in
deriving the C-S inequality. We will discuss three proofs, the last one being the proof
given in the textbook by Moon and Stirling.

First Proof. Perhaps the simplest parametric relationship we can envisage (having only
one free parameter) is

0 ≤ ‖x+ βy‖2 = 〈x+ βy, x+ βy〉 = ‖x‖2 + 2 Re β 〈x, y〉+ |β|2‖y‖2 . (1)

Note that this relationship involves the squares of the norms of x and y, whereas the
C-S inequaliy involves the norms themselves. Thus, in order to understand better
where we are heading, let us rewrite the C-S inequality as,

|〈x, y〉|2

‖y‖2
≤ ‖x‖2 . (2)

We can now try to find a value for α which will place equation (1) into the form (2).
Without too much work, one can show that the value,

β = −〈x, y〉
‖y‖2

,

will do the job. Note the educated guessing involved in this proof, which is a standard
proof given in many textbooks. However, in lieu of an educated guess, one can also
ask what value of β makes the inequality shown above as tight as possible and see
where that line of inquiry leads. Indeed, this latter tack is essentially the second proof
described immediately below.

Second Proof. This is the optimization-based proof given in the Moon & Stirling text,
which is based on solving,

min
ρ
‖x− ρy‖2.

Although the proof Moon & Stirling use is certainly valid qua proof, it is not one that
is necessarily natural to use by a student at this stage of knowledge. Of course, one
can ask the question as to which value of ρ gives the tightest bound, and the answer to
this question, which is given by Moon & Stirling, happens to also show that the C-S
inequality holds. Note that by asking for the specific value of ρ for which the always
nonnegative quantity ‖x − ρy‖2 is minimized, Moon & Stirling are effectively asking
for the optimal projection of x onto the one-dimensional subspace spanned by y in the
least-squares sense. This optimal choice of ρ happens to be given by ρ = −β, where β
has the value we found in the first proof given above.
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Third Proof. An alternative proof, one that involves no educated guessing or optimiza-
tion, is to note that for all scalars α and β we have,

0 ≤ ‖αx+ βy‖2 = 〈αx+ βy, αx+ βy〉
= |α|2‖x‖2 + ᾱβ 〈x, y〉+ β̄α〈y, x〉+ |β|2‖y‖2

=

(
α

β

)H (
‖x‖2 〈x, y〉
〈y, x〉 ‖y‖2

)(
α

β

)
,

which (because ‖x‖2 ≥ 0) is true iff,1

det

(
‖x‖2 〈x, y〉
〈y, x〉 ‖y‖2

)
= ‖x‖2‖y‖2 − |〈x, y〉|2 ≥ 0,

which yields the C-S inequality. Note that if x and y are both nonzero and not collinear
(i.e., are not proportional) we must have the strict inequality,

‖x‖2‖y‖2 − |〈x, y〉|2 > 0,

whereas if nonzero x and y are proportional, we must have strict equality,

‖x‖2‖y‖2 − |〈x, y〉|2 = 0.

2. Moon 2.1-4. The proof for both cases is essentially the same as R1 is just a specific
instance of the general Rn case. We have (take α = −1 in equation (1) above),

‖x+ y‖2 = ‖x‖2 + 2 Re 〈x, y〉+ ‖y‖2

≤ ‖x‖2 + 2 | 〈x, y〉 |+ ‖y‖2

≤ ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2

≤ (‖x‖+ ‖y‖)2 .

Taking the square root of both sides yields the triangle inequality.

3. Moon 2.12-57 and 2.12-58. All the desired properties of vector addition and scalar
multiplication are inherited from the parent space.

Let v1 and v2 both belong to V ∩ W . (Note that this meanas that v1 and v2 both
belong to the subspace V and both belong to the subspaceW .) Then for all scalars α1

and α2, α1v1 + α2v2 ∈ V , because V is a subspace, and α1v1 + α2v2 ∈ W , because W
is a subspace. Therefore α1v1 + α2v2 ∈ V ∩ W , showing that we satisfy the required
closure condition.

Let v = v1 + v2 and w = w1 + w2, where v1, w1 ∈ V and v1, w1 ∈ W . The vectors
v and w represent typical elements in the set V +W . For all scalars α and β, we
have αv + βw = (αv1 + βw1) + (αv2 + βw2) ∈ V +W , because (αv1 + βw1) ∈ V and
(αv2 + βw2) ∈ W due to the fact that V and W are both subspaces.

1That is, the matrix in the preceding quadratic form must be positive semidefinite, which is true iff its
leading principal minors are nonnegative.
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4. Moon 2.12-60. (a) Assume V ⊥ W and x ∈ V ∩W . Then we must have x ⊥ x! This
implies that 〈x, x〉 = 0, which is true if and only if x = 0. Therefore V and W are
disjoint. (Note that we have also shown that the only vector orthogonal to itself is the
zero vector.) (b) Any simple counterexample will suffice.

5. Moon 2.12-73. The representation shown for the operator P is known as a spectral
representation. (a) Note that by construction PiPj = δi,jPj and therefore PPj = λjPj.
Also note that x ∈ Vj iff x = Pjx. Therefore for x ∈ Vj,

Px = PPjx = λjPjx = λjx .

(b) Let P be a projection operator onto a subspace V along the subspace W . (If P
is an orthogonal projection operator, we take W = V⊥.) then Px = λx for only two
cases. Either x ∈ V , in which case Px = x and λ = 1, or x ∈ W , in which case
Px = 0 · x and λ = 0.

6. Let A be hermitian, AH = A. (a) Note that xHAx =
(
xHAx

)H
= xHAHx = xHAx,

and therefore xHAx is real. Let x be any eigenvector of A with eigenvalue λ. Then
from Ax = λx we obtain,

xHAx = λxHx = λ‖x‖2 . (3)

Therefore λ must be real. (b) From equation (3). we see that if xHAx is nonegative,
then the eigenvalue λ must be nonegative. (c) If A has multiple eigenvectors for
the same eigenvalue λ (in this case we say that these vectors span the eigenspace
associated with λ), we can apply the Gram-Schmidt procedure to orthogonalize within
this eigenspace. Now suppose that x1 and x2 are normalized eigenvectors associated
with the two distinct eigenvalues λ1 and λ2 respectively. Then, using the fact that the
eigenvalues are real,

λ1 〈x1, x2〉 = λ1x
H
1 x2 = (Ax1)

Hx2 = xH1 A
Hx2 = xH1 Ax2 = λ2x

H
1 x2 = λ2 〈x1, x2〉 .

Since λ1 6= λ2 it must be the case that 〈x1, x2〉 = 0. This shows that the eigenspaces
of A are orthogonal.
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